Compact Hausdorff Heyting algebras
نویسندگان
چکیده
We prove that the topology of a compact Hausdorff topological Heyting algebra is a Stone topology. It then follows from known results that a Heyting algebra is profinite iff it admits a compact Hausdorff topology that makes it a compact Hausdorff topological Heyting algebra.
منابع مشابه
Codimension and pseudometric in co-Heyting algebras
In this paper we introduce a notion of dimension and codimension for every element of a distributive bounded lattice L. These notions prove to have a good behavior when L is a co-Heyting algebra. In this case the codimension gives rise to a pseudometric on L which satisfies the ultrametric triangle inequality. We prove that the Hausdorff completion of L with respect to this pseudometric is prec...
متن کاملDualities in Lattice Theory
In this note we prove several duality theorems in lattice theory. We also discuss the connection between spectral spaces and Priestley spaces, and interpret Priestley duality in terms of spectral spaces. The organization of this note is as follows. In the first section we collect appropriate definitions and basic results common to many of the various topics. The next four sections consider Birk...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملOn Heyting algebras and dual BCK-algebras
A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کامل